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Capture-recapture models and Bayesian sampling

by

Edward I. George and Christian P. Robert

Summary

Capture-recapture models are widely used to estimate the unknown size of a closed
population, N. A successful strategy for exploiting information about N in this setting
is obtained through Bayesian modelling, as shown in Castledine (1981). However, direct
Bayesian approaches are often cumbersome to implement in this setting. In this paper, we
show how Bayesian sampling, using Gibbs sampling and data augmentation, is particularly
well suited for use in a wide variety of capture-recapture models, including the multinomial
and classical hypergeometric models. This approach can provide accurate approximations
of posterior expressions, including the entire posterior distribution. 4Ye)

Keywords: Bayesian computation, data augmentation, Gibbs sampling, conjugate priors, catch
propensities, Petersen estimator, behavioral and temporal models.

1. Introduction.

A common experimental setup for estimating N, the unknown size of a closed pop-
ulation, is based on sampling the population more than once, paying special attention to
the number of recaptured individuals (i.e. those that appeared in more than one sample).
Such setups were first used in the context of estimating the size of wildlife populations,
where they were baptised capture-recapture models (see Seber (1982) for an overview and
bibliography). This setup has also appeared in proofreading problems (Polya (1976)),
in reliability problems in manufacturing quality control and program debugging (Jewell
(1985) and Nayak (1988)) and in estimating the number of vital human events (Mark,
Setlzer and Kroti (1974)). A recent application which has received much attention is the
estimation of coverage error in surveys and censuses (Wolter (1986)).

For the simple case of drawing two samples from a population of unknown size N,
Wolter (1986) proposes the following general multinonmial setup. He shows that a large
variety of capture-recapture models in the literature are equivalent to multinomial experi-
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ments where the ith population member is sampled according to the following probabilities

Sample 2

in out
Sample 1 in Phl P12

out 021  2

where PlI + P1 2 + P2i + P22 = 1. The realisation of such an experiment can be summarised
by the counts

Sample 2

in out
Sample 1 in nil n12

out n2l n 2 2

where n I + n 12 + n21 + n 22 = N. Note that N remains unknown, since the value n 22 is
not observed. Nonetheless, under certain assumptions on p, the vector of all probabilities
Pek above, information about N can be extracted from the cell counts nil, n12 and n21.

Although a variety of frequentist and likelihood approaches for making inference about
N have appeared in the literature (see, e.g., Bishop, Fienberg and Holland (1975, Chapter
6), Burnham et al. (1986), Pickands and Raghavachari (1989) and Huggins (1989)), we
shall focus on the promising Bayesian approach advocated by Castledine (1981)), Jewell
(1985) and Smith (1988). In the capture-recapture setting, the Bayesian approach to
exploiting information about N proceeds as follows. For a particular capture-recapture
setup, the joint posterior distribution of N and p can be obtained from the likelihood
L(N, pldata) and the (possibly improper) prior distribution ir(N, p),

7r(N,pidata) oc L(N,pdata)ir(N,p). (I.1)

The Bayes estimator for N is then the (formal) posterior mean, E[Nldata], of the marginal
distribution

r(Nldata) = f 7r(N,pldata)dp (1.2)

A major deficiency of this approach has been the difficulty of calculating the posterior mean
and other posterior quantities. Unfortunately, closed form expressions for the marginal in
(1.2) are often unavailable, and thus approximate methods have to be used.

The purpose of this paper is to show how Bayesian sampling is a promising alterna-
tive to both analytical calculation and numerical approximation in the Bayesian analysis
of capture-recapture models. The essential idea behind Bayesian sampling is to obtain in- o
formation, about marginal posterior distributions by indirect sampling, see Robert (1990).
In the capture-recapture setting, this effectively consists of obtaining a random sample d

from the marginal, 1 o
N,... ,N, -- 7r(N[data), (1.3)

without integrating out p in (1.2). By taking n larg. en-igh sample, the posterior mean
or any other posterior quantity can then be estimated to the desired degree of accuracy.
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Rather than sample directly from the marginal posterior w(Nldata), Bayesian sam-
pling exploits the conditional distributions

ir(Nlp,data) and 7r(pIN, data). (1.4)

This can be done by using a special case of Gibbs sampling as well as data augmentation,
see Gelfand and Smith (1990) or Diebolt and Robert (1990). We note that these two
approaches are not the same in general. Starting with an initial value for N, say No, each
sample point in (1.3) is obtained by sampling iteratively from

N; - ir(NIpk-l, data) and Pk - ir(pjN;,data). (1.5)

It follows from Diebolt and Robert (1990) that the distribution of N; converges to 7r(NI
data) as k goes to +o. Thus, for k large enough, N1 = N is effectively an observation
from r(Nldata). By repeating this procedure n times, the random sample in (1.3) is
obtained.

A powerful advantage of Bayesian sampling over analytical calculation is that obtain-
ing the random sample in (1.3) does not require the marginal posterior (1.2). Instead, all
that is needed are the conditional distributions in (1.4). As will be seen in the sequel,
these are generally easy to obtain in the capture-recapture setting. Furthermore, useful
priors can be chosen so that these conditional distrib-tions will be of standard form, allow-
ing for fast and efficient simulation of the iterative sampling in (1.5). Another advantage
of Bayesian sampling is that the multinomial model above can be made to subsume the
classical hypergeometric model which also arises in this setting (see, e.g., Darroch (1958))
when the sample sizes are fixed (see Section 4).

This plan of this paper is as follows. In Section 2, we present different models, following
the classification of Wolter (1986). In Section 3, we derive the associated Bayesian models
and illustrate the advantages of a Bayesian sampling approach. In Section 4, we indicate
how our methods also provide a convenient solution for the classical hypergeometric model.
Section 5 studies some heterogeneous extensions and gives particular attention to stratified
models. Section 6 extends, through an example, the previous results to a multiple recapture
setting.

2. Some capture-recapture models.

Consider a closed population of unknown size N. Two random samples are drawn
consecutively from this population. Let n, and n 2 be the sizes of these two samples, with
n, = nil + n 12 and n 2 = nil + n 2 l, nil being the size of the intersection of the two
samples. The three random variables n 11 , n12 and n2l are observed, as described above.
We denote by n. the total number of captures, i.e. n. = n, + n 2, and by n+ the number
of distinct captured objects, i.e. n+ = nil + nl2 + n21 . In the cases considered below,
n 1 1 , n,2 and n21 are sufficient statistics. Notice that here it is not necessary to know the
complete 'history' of each captured individual.

This setup can be generalised for a larger number of recapture events, as in Castledine
(1981) or Wolter (1986). However, the extension to these cases is straightforward and,
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until Section 6, we focus on the single recapture case. Following Wolter (1986), we present
below several capture-recapture models, distinguished by different assumptions on the
probabilities of capture.

2.1. The uniform model Mo. For the model Mo, each individual has the same prob-
ability p of being captured in the first or the second sample. The likelihood function for
this model is

Lo(N,pjnji,nl 2 ,n1 2) - 1 N_ N
nl n12 n2i

The maximum likelihood estimator of N is then
n2

4nl2

where [ • J denotes the integer part function.

2.2. The behavioral model Mb. For the model Mb, the probability of recapture c is
different from the probability of initial capture, p. If c > p, the individuals are said to
be 'trap-happy' and if c < p, the individuals are 'trap-shy'. For instance, in some wildlife
experiments, captured animals are often less likely to be captured a second time, in which
case c < p. The likelihood function for this model is

Lb(N,p,cnl,n12,n2l) ( ( nx n pn+Cni,(I - e)fl2(1 - p)2N-n.

and the maximum likelihood estimator is

[n+ n+ n)2)

2.3. The temporal model Mt. For the model Mt, the probability of capture for the
first sample, P1, is different from the probability of capture in the second sample, p2. In
this case, either the whole population is affected by the first capture or the conditions of
the experiment have been modified. The likelihood function for this model is

( N ) ,n. ,,n2 (-pl)N-nl( p2Nn2

Lt(N'pl'P 2 Inlln l2,n21 ) n (ill n12 n 2 1 ) 2  P( )

and the maximum likelihood estimator is

t [nn .

ni

Wolter (1986) also calls Mt the Petersen model, because the maximum likelihood estimator
agrees with the maximum likelihood estimator in the classical Petersen model where the
sample sizes n, and n2 are fixed (see Section 4).
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More complex models can also be introduced. For instance, the combined model Mbt

takes into account a change between the two captures and for the captured objects. Section
5 deals with a general heterogeneous model and Section 6 with a multiple recapture model.

3. Conditional posterior distributions.

A Bayesian analysis of any of the three capture-recapture setups M0 , Mb or A de-
scribed in Section 2, would proceed by multiplying a (possibly improper) prior 7r(N, p) by
the correspondixg likelihhod LO, Lb or Lt to obtain the posterior distribution 7r(N, pIdata)
as in (1.1). In this section, we illustrate how for certain priors, standard conditional poste-
rior distributions 7r(pJN, data) and 7r(Nip, data) are obtained which allow for an efficient
sampling simulation. Thus, repeated iterative sampling from these standard conditional
posterior distributions as in (1.5) is a readily available method for obtaining a random
sample from the marginal posterior 7r(Nidata). The Bayes estimates of N, lE[Nidatal, or
any other posterior quantity of interest, can then be estimated to the desired degree of
accuracy. We also show that in these cases, the marginal posterior distribution 7r(Nldata)
is analytically unwieldy, making infeasible the alternative of 'integrating out' p in (1.2).

In what follows, we focus on priors of the form

7r(N,p) = 7r(N) r(p), (3.1)

where r(N) is Poisson Po(A). Raftery (1988), in the related problem of binomial N
estimation, also used a Poisson prior on N. However, it should be apparent that our
developments can be adapted to other prior distributions. For instance, Castledine (1981)
used an improper prior, 7r(N) oc 1/N (see also Section 6).

For a prior of the form (3.1) in model M0 , the joint posterior is

N! Pn q2N-n

(N - n+)!

oc (.N n+)! (p/q)" 7r(p),

where q - 1 - p. Therefore,

7r(N - n+Jp,nll,n1 2 ,n21) = Po(q2 A)

7pJN,nii,n12 ,n 2 1) c pnt. 2 N - .r (P).

Depending on the prior distribution 7r(p), we may use Bayesian sampling or integrate out
the parameter p to obtain the posterior distribution 7r(Nnll,n 12 ,n 21). For instance, if
ir(p) is Be(a, #), the marginal posterior distribution is very cumbersome to compute while

Bayesian sampling is straightforward. Indeed, we have

(N - on+)! fo Pa+n.-1(l - p)2N-n .+/-ldp

AN B(a+ n+,# + 2N - n.)

N -nn+)! B(a,,3)

AN (a+ n+ -1)...a(3 + 2N- n. -)..

(N-n+)! (a +,6 + 2N -1)... (a +)
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while

ir(N - n+lp,n l,n 2 ,n21 ) -= Po(q2A)

7r(plN,nnl2 ,n 2l) E Be(" + n.,# + 2N - n.).

Other distributions on N do not modify the complexity of the posterior distribution (except
if they have small finite support).

For model Mb, we consider the special case of (3.1) where 7r(N, p) = 7r(p)r(c)r(N)
and 7r(N) is Poisson Po(A). The joint posterior here is

ir(N, p, cmiir-l2, n21 ) N! p C n (1-i C) n2Iq 2 N-n. 7r(p)7r(c)ir(N)

(N - n)

(q2) P n , I C) 2l qlr(P)r(C)

(N - n+)!Pc( -

Therefore,
7r(N - n+Ip, nil,n2,n 2 ) Po(q 2 A)

7r(p1N, nil,n12 ,n 21 ) oc pn+ q2N-n. r(p)
7r (clIn 1,n 12,n 2 1) oc C, ch(1 _ C)nl7r(c).

Once again, in the case where the prior distributions on p and c are beta distributions, a
good approximation to the posterior distribution of N is provided by Bayesian sampling,
while a direct approach faces the same computational problems as for the model Mo.

For model Mt, we consider the special case of (3.1) where 7r(N,p) = 7r(p,)r(p2 )7r(N)
and r(N) is Poisson Po(A). The joint posterior here is

N!7r(N, P1,P21ni1,nl2,n2l) OC (N -n+)!p p ' P I.  -P2- - P2) -"'r(Pl)7r(P2)7r(N)

0C (N1 - fl)!i-P2( ,\)N i (1- 2 r.I)rP)

(N - n) iP

Therefore,
ir(N - n+Ip,n-i,ni2,n 2 ) Po((1 - pi)(1 - p2 )A)

7(p 2 IN,ni,ni2 ,n 2i) p (1 - p)N -  7r(pI)

The same remarks as in the previous models apply here.

The prior distributions used above require prior information about the parameters a,

Sand A. In the absence of prior information, we suggest a = P = 1 and either using
ir(N) = I/N (see Castledine (1981)), which corresponds to the Jeffreys prior ir(A) =
A-', or replacing A by the maximum likelihood estimator of the appropriate model, thus
advocating a pseudo-empirical Bayes approach. Another alternative is developed in the
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next section, where we show that the classical hypergeometric model can be represented
as a limiting case of the temporal model.

4. Hypergeometric model.

We have been dealing until now with the binomial model, where the two sample sizes
are supposed to be random. Although adequate for many practical situations, a simpler
model has also been studied in the literature, where the two sample sizes are fixed (or
the model is conditional on these two sample sizes). It is called the Petersen model or
the Darroch model (see Darroch (1958), Casteldine (1981), Seber (1982)). The sample
distribution of "1u is given by

( n j N-nj
f (njj N= " i n-n ) (4.1)

(N)

It is then obvious that a direct Bayesian approach will lead to rather complicated com-
putations, except in the particular case of bounded uniform priors. We show below that
Bayesian sampling allows for a much more efficient treatment.

Starting back with the temporal model Mt, we see that

ir(Nlp,,p2 ,n+) oc ( NAMV++1(l ,- n+7(n-+)

where -- 1 - (1 - p)(I - P2). In particular, if ir(N) = 1, the posterior distribution of N
is eg(n+, p). If, in addition, the prior distribution on p, and P2 is Be(a, 0), the marginal
posterior distribution satisfies

N! (N-,ni + -1)! (N -n2 +0 - 1)!
(N - n+)! (N ++ -I)! (N+a+0-l)!

N! (N - n,)! (N - n 2)!
(N - n+)! N! N!

(A)
if a = 0 and 0 = 1. Therefore, the hypergeometric model can be rewritten as a Mt model
with improper prior distributions 7r(N) = 1 and 7r(p) = 1/p, a fact noted by Castledine

(1981). Although these priors may not really correspond to a true prior opinion, combining
the hierarchical decomposition of (4.1) with Bayesian sampling provides a very efficient
tool for computing the Bayes estimators, since the conditional distributions for p, and p2,

7r(pjIN,nj) oc e(n,N+ 1-n,), (i= 1,2)

are as easy to simulate as Aleg(n+,A). Note that the temporal aspect of the model is

absent from the original formulation, as well as the probability p. In this case, Bayesian

sampling makes use of the hierarchical representation to approximate the Bayes estimator,

even though it does not necessarily correspond to a true state of Nature. (See Robert

(1990) for additional comments on the utilisation of mixture representations by Bayesian

sampling.)
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5. Heterogeneous extensions.

As considered in Burnham and Overton (1978), Castledine (1981) and Huggins (1989),
a more general model can obviously be introduced, namely that the probability is different
for each individual (i) and each capture (j) and denoted by pii. The likelihood is then

N 2

L(NpIA) I H p i -

ifi, jffi1i

where A = (611,.., 6N2) is the vector of the capture indicators for all members of the
population and each capture. By convention, the first members are the captured members.
In this more general context, their 'history' obviously counts.

5.1. Bayesian analysis. From a pure Bayesian point of view, we can estimate the
parameters of the model if the available prior information is sufficient. For instance, if the
priors on the probabilities pi, are all beta Be(a, P) priors, the marginal distribution of A
given N is

N 2 l (16i-1

f(AIN) = 1" l'1j B(a,Pi) dpj
i=1 j=,

N 2 B 6j l j
1 rt B(a + 6i,, + 1 - 6,)

i=lj=l B(ao)

= ~ i , + (1 - bq)

C, n n ) 2N-n.

Therefore, the information about the size of the intersection between the two samples is
not used by the likelihood. This result is not very surprising since the probabilities vary
between the two captures. If the prior on N is again a Poisson distribution Po(A), the
posterior distribution of (N - n.) is

Here the posterior distribution is directly available and there is no need to call for Bayesian
sampling. Note also that the marginal distribution of n. given N is constant when a = #.

In the case when the probability is the same for each capture and pi Be(a, p), the
marginal distribution of A given N is

Nlo (2- I p,#'Sp*+" -'dp,

f(A N) = 2' ci - (1 -
i=1 foB~c~
N
N B(a+6i,i+2-6)

1 B(,/,)a,
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where 6, = 6bi + 6b2. Therefore, the distribution of (nll,n1 2,n 21 ) given N is

f(nln l 2,n 21 JN) = ( N )n(21fl) {t2+n2z (CX(C + )),11 (00 + 1))2N-n+

\nil n12 n2l [(a + #)(a + P+ )12N

In this case, the posterior distribution of (N - n+) is

PO( G- +#(a+ I) )2)

thus depends only on the 'effective' size of the double sample, n+. If a = = , the
density of (nl 1, n12, n 21 ) is again constant.

These two results show that a totally heterogeneous model actually brings very little
information on the population size N since too many parameters have to be controlled at
the same time. In addition, the fact that the probabilities are all different calls for many
recaptures, as it is the case in Huggins (1988). This is also an example of a situation where
Bayesian sampling is of no use, since Lhe marginal posterior distribution of N is much
more straightforward than the conditional posterior.

5.2. Known strata. A more amenable case of heterogeneity occurs when the population
is divided into known strata such as male/female, young/adult/senior, etc... This type ofdivision usually occurs in surveys and censuses. We can then use the approach of Section

3 according to two scenarios:

(i) The strata are independent and each stratum size N. (s = 1,...,S) has a prior
distribution Po(A.). We have then S independent replications of the model considered
in Section 3. Bayesian sampling provides an easy approximation of the posterior
distributions of N,..., Ns and thus of the posterior distribution of N = N1 +.. .+Ns.

(ii) The population size N has a prior distribution Po(A) and the strata sizes (N,,..., Ns)
follows a multinomial distribution Ms(N; wI,... , ws). This assumption is often jus-
tified in the case of surveys where the proportions of the subpopulations are rather
well-known. However, when N is integrated out, this model appears as a special case
of (i), since

N. ~ Po(Aw.).

In both cases, we can see that Bayesian sampling allows for an easy computation of the
strata sizes estimators.

5.3. Unknown strata. It may also happen that the population is divided into S strata
which are impossible to detect, even after individuals have been captured. For instance,
this occurs when a part of the population has an undetected disease (e.g., seropositivity)
which modifies its behaviour. Therefore, the probability of capture of a given member of the
population, pi, is one of the probabilities 7r, ... , irs for the different strata, with probability
we (1 < s < S) corresponding to the proportion of the stratum in the whole population.
We can model the probabilities iro as beta distributions, Be(a,, 1.) (1 < s < S). For any
prior distribution on N, it is then easy to see that 7r(Nldata) cannot be used in practice,
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even though it may be expressed in a closed form for some priors. This is often the case
with Bayesian analyses of mixture models, since all the partitions of the sample have to
be considered (see Diebolt and Robert (1990)).

Consider a Poisson distribution on N associated with the previous model. We then
introduce an auxiliary parameter to implement the Bayesian sampling approach. Let zjo
(1 < i < N, 1 < s < S) denote the indicator function l{pt = ir.}. Therefore,

(Zi1,.. .-, zs) ~- MS (1;W1,. . . , WS)

and, conditionally on z, = (Zii..., zis),

S

Pi 1 7rzi"

(i.e. z, c-,mpletely determines p). It is easy to see that the simulation steps for Bayesian
sampling are then

1. 7r, r(7rIN, z, data) (s 1 IS)
2. zi -r(z ilN, ir, data) (i l..N)

3. N - r(Nlir,z, data),

where
7r(7r.JNz, data) Bc(a. + m.,O. + 2n, - ma),

7r(N7r, z, data) P o (A(1 - Ir)"' (1 7rs) )

and
N NM. = Ezi.j n=Ez~ , /N.
i=l i=1

The variables n,, m. and rT arc updat.d at step 2.

This particular case provides a strong argument in favor of Bayesian sampling since
it appears to be the only way to study this intricated setup. A non-Bayesian approach
cannot handle all the parameters and a formal Bayesian approach requires an enormous
amount of computing time.

6. A multiple recapture example.

In this section, we briefly illustrate the extension of our techniques to the multiple
recapture se~up by application to a real data set. The data set we consider is from Castle-
dine (1981) and appears in Table 1. It consists of 14 capture events from a populatioa of
sunfish. At the ith capture, n fishes are captured, out of which m have been previously
captured. Thus, n4. = Z_ (ni - m,) = 138 is the total number of different fish captured.
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i 1 2 3 4567
ni 10 27 17 7 1 5 6
mi 0 0 0 0002

i [8 9 10 11 12 13 14
ni 15 9 18 16 5 7 19
mi 1 5 5 4 2 2 3

Table 1. Multiple recapture data for a population of sunfish.

Following Castledine (1981), we consider a temporal model Mt with s = 14 capture
episodes. We put the same prior Be(a,i8) on each of the capture probabilities pl,... ,PA
and use the prior yr(N) oc 11N. Analogous to the developments in Sections 2 and 3, it is
straightforward to show that the conditional distributions are

-r(Nlpi,...,pdata) Weg(n+ - 1,p), (6.1)

with p - (1- P1)... (1 - p.), and (i = 1,..S)

7r(p[ IN, data) E Be(a + ni,,3 + N - n1). (6.2)

We employed Bayesian sampling to obtain the posterior quantities listed in Table 2
and the posterior histograms in Figure 1. This was done as follows. For each of seven
choices of Beta parameters (a, 0), we simulated a random sample of size n = 1000 from
the marginal posterior as in (1.3). We iteratively sampled as in (1.5) from (6.1) and (6.2)
a total of fifty times to obtain each sampled observation. (The simulations were performed
with the IMSL routines RNNBN and DRNBET.) The mle for N, here 460, was used as
the starting value N . Finally, the posterior quantities were estimated by their sample
moments.

95% 95%
Prior Posterior Posterior Posterior credible credible

parameters of N ( 1)  of log(N) () of log(N)( 2) interval interval
a '3 Mean St.Dev. Mean St.Dev. Mean St.Dev. for N (') for N (2)

0 1 448 84 6.09 0.18 6.15 0.18 312-650 322-656
2 100 506 70 6.21 0.14 6.21 0.14 378-663 393-676
3 100 419 49 6.03 0.12 6.05 0.12 332-520 335-539
10 500 548 54 6.30 0.10 6.31 0.10 454-664 454-671
15 500 408 37 6.01 0.09 6.02 0.09 342-485 347-489

20 1000 548 49 6.32 0.09 6.33 0.09 471-665 470-666
30 1000 406 32 6.01 0.08 6.01 0.08 348-475 350-478

Table 2. Comparison between Bayesian sampling approximation (0)
and the normal approximation in Castledine (1981) (2).

11



Figure 1 should appear around here

We have also included in Table 2 the estimates of Castledine (1981) who performed the
same analysis, but used a normal approximation to the posterior distribution of log(N),
to obtain the required quantities. The agreement between our numbers and his shows that
Castledine's approximations performed remarkably well in most of the cases. Notice that
the greatest disagreement between the two approaches occurs for small values of a and/3,
especially for a = 0,/3 = 1, when prior information is weakest. One can see in Figure 1 that,
in this case, the skewness of the posterior distribution of N is not entirely removed by the
log transformation so that Castledine approximation will be off, especially for computing
the interval estimates. An important justification of Bayesian sampling techniques is that
they can circumvent the problems of inaccurate normal approximations, as pointed out in
Tanner and Wong (1987). Finally, note that, in this analysis, the estimates of N seem to
be sensitive to the choice of the Beta prior. Thus, it is probably most reasonable to use
the estimates for the choice (a,/3) = (0, 1) which, except for the slightly different prior on
N, yields the hypergeometric case discussed in Section 4.

7. Conclusion

This paper has shown that in a large variety of capture-recapture models, Bayesian
sampling can provide a fast and efficient approach to obtaining posterior information in
Bayes analyses. The particular models we considered were meant to illustrate the gen-
eral ideas for implementing Bayesian sampling in this context. Of course, our treatment
was by no means exhaustive, as there are many other variants and generalisations where
Bayesian sampling should also be fruitful. For instance, it would be interesting to apply
this approach to the analysis of open population extensions which take into account the
deaths and immigrations which actually occur in wildlife populations. Another variation,
studied by Seber and Felton (1981), is to consider tag-loss, namely the misclassification
of recaptured objects as newly captured objects. This last variant may also be used in
epidemiology when the proportion of people in each stratum varies between the captures.
Another possible extension deals with the estimation of the number of species, as con-
sidered in Efron and Thisted (1976). The key to the availability of Bayesian sampling
methods in all of these extensions is the availability of conditional distributionis for which
easy computing is practically possible.

Bayesian sampling is not a new inferential procedure but rather an approach for fa-
cilitating Bayesian inference, i.e. a powerful tool at the end of the Bayesian processing
chain. If a different inferential approach is desired, then Bayesian sampling will be irrel-
evant. The main criticism of Bayesian inference is its requirement of prior input. If such
prior information is available, and it will be in some analyses, we believe a direct Bayesian
approach is reasonable. However, when little prior information is available, we would rec-
ommend robust Bayesian methods. It turns out that, in capture-recapture settings, such
robust approaches are indeed possible. These can be obtained by the hierarchical and em-
pirical Bayesian approaches discussed in Sections 3 and 4. Fortunately, powerful Bayesian
sampling methods are also readily available in these cases.
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